How fast is fast?
 Order of magnitude analysis

Bruce Merry

Definition of big-0

Let $f(n)$ and $g(n)$ be two functions. We say that

$$
f(n)=\mathrm{O}(g(n))
$$

if and only if there exist constants C and N such that

$$
f(n) \leq C g(n) \text { for all } n \geq N \text {. }
$$

If an algorithm takes $f(n)$ seconds to run on an input of size n, then it is said to be $\mathrm{O}(g(n))$.

Examples

- Constant factors are irrelevant: $3 n^{2}=\mathrm{O}\left(n^{2}\right)$.

Examples

- Constant factors are irrelevant: $3 n^{2}=\mathrm{O}\left(n^{2}\right)$.
- In a sum, only the larger term is relevant: $n^{2}+n \cdot \log n=\mathrm{O}\left(n^{2}\right)$.

Examples

- Constant factors are irrelevant: $3 n^{2}=\mathrm{O}\left(n^{2}\right)$.
- In a sum, only the larger term is relevant: $n^{2}+n \cdot \log n=\mathrm{O}\left(n^{2}\right)$.
- Only the dominant term in a polynomial is relevant: $3 n^{2}+4 n+2=\mathrm{O}\left(n^{2}\right)$.

Examples

- Constant factors are irrelevant: $3 n^{2}=\mathrm{O}\left(n^{2}\right)$.
- In a sum, only the larger term is relevant: $n^{2}+n \cdot \log n=\mathrm{O}\left(n^{2}\right)$.
- Only the dominant term in a polynomial is relevant: $3 n^{2}+4 n+2=\mathrm{O}\left(n^{2}\right)$.
- It is only an upper bound: $n=\mathrm{O}\left(n^{2}\right)$, although one usually gives the tightest possible bound.

Examples

- Constant factors are irrelevant: $3 n^{2}=\mathrm{O}\left(n^{2}\right)$.
- In a sum, only the larger term is relevant:
$n^{2}+n \cdot \log n=\mathrm{O}\left(n^{2}\right)$.
- Only the dominant term in a polynomial is relevant: $3 n^{2}+4 n+2=\mathrm{O}\left(n^{2}\right)$.
- It is only an upper bound: $n=O\left(n^{2}\right)$, although one usually gives the tightest possible bound.
- It is a worst case bound: linear search is $\mathrm{O}(n)$, even though it might only take one step.

Rule of thumb

To estimate the running time of your program

- Substitute the data set size into the big-O formula
- Divide by a scale factor for the machine (10-100 million per second)
- Estimating the scale factor is a bit of an art.

Examples

1	for $\mathrm{i}:=1$ to N do
2	for $\mathrm{j}:=1$ to $\mathrm{N}-\mathrm{i}$ do
3	if $\mathrm{a}[\mathrm{j}]>\mathrm{a}[\mathrm{j}+1]$ then
4	$\operatorname{swap}(a[j], a[j+1])$;

Examples

1 for $\mathrm{i}:=1$ to N do
for $\mathrm{j}:=1$ to $\mathrm{N}-\mathrm{i}$ do
if $a[j]>a[j+1]$ then
$\operatorname{swap}(a[j], a[j+1])$;

Answer: $\mathrm{O}\left(n^{2}\right)$.

Examples

1 for i :=1 to N do
2 for $\mathrm{j}:=1$ to $\mathrm{N}-\mathrm{i}$ do

```
        if a[j]>a[j + 1] then
```

 swap(a[j], a[j + 1]);
 Answer: $\mathrm{O}\left(n^{2}\right)$.
$1 \mathrm{~K}:=0$;
2 for i :=1 to N do
while $(\mathrm{K}<\mathrm{i})$ and $(\operatorname{bad}[\mathrm{i}][\mathrm{i}-\mathrm{K}])$ do $\mathrm{K}:=\mathrm{K}+1$;

Examples

```
for i := 1 to N do
    for j := 1 to N - i do
        if a[j]>a[j + 1] then
                swap(a[j], a[j + 1]);
```

Answer: $\mathrm{O}\left(n^{2}\right)$.
$1 \mathrm{~K}:=0$;
2 for i := 1 to N do
while $(\mathrm{K}<\mathrm{i})$ and $(\operatorname{bad}[\mathrm{i}][\mathrm{i}-\mathrm{K}])$ do $\mathrm{K}:=\mathrm{K}+1$;
Answer: $\mathrm{O}(n)$.

Divide and conquer

```
1 left :=1;
2 right := N;
3 while ( left < right ) do
4 begin
5 middle := ( left + right ) div 2;
6 if a[middle] < target then left := middle +1
7 else right := middle;
8 end;
```


Divide and conquer

```
1 left :=1;
2 right := N ;
while ( left < right) do
begin
    middle := ( left + right ) div 2;
    if a[middle] < target then left := middle + 1
    else right := middle;
    end;
```

 Answer: \(\mathrm{O}(\log n)\).

Divide and conquer

1 procedure recurse(left, right : integer);
2 begin
3 for i := left to right do do_something_constant(i);
4 middle := (left + right) div 2;
5
6 end;

Divide and conquer

1 procedure recurse(left, right : integer);
2 begin

Answer: $\mathrm{O}(n)$.

Divide and conquer

1 procedure recurse(left, right : integer);
2 begin

Answer: $\mathrm{O}(n)$.

Divide and conquer

```
procedure recurse(left, right : integer);
begin
    for i := left to right do do_something_constant(i);
    middle := ( left + right ) div 2;
    if (left < middle) then recurse(left , middle);
    if (middle +1 < right ) then recurse(middle + 1, right );
end;
```


Divide and conquer

```
procedure recurse(left, right : integer);
begin
    for i := left to right do do_something_constant(i);
    middle := ( left + right ) div 2;
    if (left < middle) then recurse(left , middle);
    if ( middle \(+1<\) right ) then recurse(middle +1 , right );
end;
```

Answer: $\mathrm{O}(n \cdot \log n)$.

Divide and conquer

procedure recurse(left, right : integer);
begin
for $\mathrm{i}:=$ left to right do do_something_constant(i);
middle := (left + right) div 2;
if (left < middle) then recurse(left , middle);
if (middle $+1<$ right) then recurse(middle +1 , right);
end;
Answer: O $(n \cdot \log n)$.

Average case

It is occasionally the case that the average case performance is much better than the worst case performance.

- Binary search tree insertion: $\mathrm{O}(\log n)$ on average, but $\mathrm{O}(n)$ in the worst case.
- Quicksort is $\mathrm{O}(n \cdot \log n)$ on average, but $\mathrm{O}\left(n^{2}\right)$ in the worst case.

However, this assumes a random distribution.

How to solve a problem

1. Look at the constraints
2. Cook up some algorithms and evaluate
3. Estimate your score from the constraints
4. Pick the simplest algorithm you can
5. Remember to leave time to code and debug

Other lessons

- Don't optimise unless you need to.
- Don't bother optimising the fast bits.
- Don't bother optimising the outer loops.
- Don't ignore an optimisation just because it doesn't affect the big O-it can still make a big difference.
- $\mathrm{O}(\log n)$ is much closer to $\mathrm{O}(1)$ than to $\mathrm{O}(n)$

Questions

?

South African Computer Olympiad training - p. $12 / 12$

