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Definition of big-O

Let f

�

n

�

and g

�

n

�

be two functions. We say that
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�

n

�

� O

�

g

�

n

� �
if and only if there exist constants C and N such that

f

�

n

�

Cg

�

n
�

for all n N �

If an algorithm takes f
�

n
�
seconds to run on an input

of size n, then it is said to be O

�

g

�

n

� �

.
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Examples

� Constant factors are irrelevant: 3n2 � O
�

n2 �
�

In a sum, only the larger term is relevant:
n2 n logn O n2 .

Only the dominant term in a polynomial is
relevant: 3n2 4n 2 O n2

It is only an upper bound: n O n2 , although
one usually gives the tightest possible bound.

It is a worst case bound: linear search is O n ,
even though it might only take one step.
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Rule of thumb

To estimate the running time of your program

� Substitute the data set size into the big-O formula

� Divide by a scale factor for the machine (10–100
million per second)

� Estimating the scale factor is a bit of an art.
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Examples

1 for i := 1 to N do

2 for j := 1 to N � i do

3 if a[ j ] > a[ j + 1] then

4 swap(a[j ], a[ j + 1]);

Answer: O n2 .

1 K := 0;

2 for i := 1 to N do

3 while (K < i ) and (bad[i ][ i K]) do K := K + 1;

Answer: O n .
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Divide and conquer

1 left := 1;

2 right := N;

3 while ( left < right ) do

4 begin

5 middle := ( left + right ) div 2;

6 if a[middle] < target then left := middle + 1

7 else right := middle;

8 end;

Answer: O logn .
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Divide and conquer

1 procedure recurse(left, right : integer);

2 begin

3 for i := left to right do do_something_constant(i);

4 middle := ( left + right ) div 2;

5 if ( left < middle) then recurse( left , middle);

6 end;

Answer: O n .
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Average case

It is occasionally the case that the average case
performance is much better than the worst case
performance.

� Binary search tree insertion: O
�

logn

�

on average,
but O

�

n

�

in the worst case.

� Quicksort is O

�

n � logn
�

on average, but O

�

n2 �

in
the worst case.

However, this assumes a random distribution.
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How to solve a problem

1. Look at the constraints

2. Cook up some algorithms and evaluate

3. Estimate your score from the constraints

4. Pick the simplest algorithm you can

5. Remember to leave time to code and debug
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Other lessons

� Don’t optimise unless you need to.

� Don’t bother optimising the fast bits.

� Don’t bother optimising the outer loops.

� Don’t ignore an optimisation just because it
doesn’t affect the big O — it can still make a big
difference.

� O

�

logn

�

is much closer to O

�

1

�

than to O

�

n

�
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Questions

?
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